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Some Multidimensional Algebras and Their
Correlations

P. MisÏ kinis1,2,3

Received May 5, 1999

A correlation among area-preserving diffeomorphisms, Weyl-ordered operators,
vector fields, and generalized Moyal algebras in two and more dimensions is
considered. A basis-independent form of the diffeomorphism algebra as well as
novel infinite-dimensional algebras of the Virasoro and Floratos±Iliopoulos types
are introduced.

1. INTRODUCTION

Infinite-dimensional algebras of the Virasoro [1] and Kac±Moody [1,

2] types have been of increasing interest in several branches of physics in

the last few years and are under intense investigation. There are reasons to

study not only one-loop, but also the multiloop or p-loop algebras. One has
the two-loop algebra of Floratos and Iliopoulos [3] as an analog of the

Virasoro algebra in the theory of membranes, correlations with the algebra

W ` [4, 5], and connections to the physical states of the c 5 1 string model

[6, 7]. Integrable nonlinear equations are correlated with area-preserving

diffeomorphism algebras of corresponding manifolds [8]. Some time ago the
Moyal±Baker algebra [9] was proposed, which is connected to the algebra

of area-preserving diffeomorphisms. The Lie algebra with trigonometric func-

tions as structure constants [10] is also connected with the area-preserving

diffeomorphism algebra. Any meaningful object existing in D-dimensional

space must be invariantly defined, i.e., it must transform as a representation

of Diff (D), the diffeomorphism group in D dimensions. The world-volume
of a p-brane as a p-dimensional surface imbedded in D-dimensional space-
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time remains invariant under the area-preserving diffeomorphism algebra S
Diff( p) after imposing all gauge conditions.

For p 5 2 there exist at least four isomorphic algebras: the Moyal
bracket algebra, the vector field algebra, the Weyl-ordered operator algebra,

and the algebra of area-preserving diffeomorphisms. For p . 2 the correlation

between these algebras is unclear; furthermore, some of them require special

definitions. In this connection, in this paper two questions are considered:

(1) how can the above-mentioned algebras be generalized for p . 2, and (2)

what is their correlation?
In this work, an explicit basis-independent form of the area-preserving

diffeomorphism algebra is found. The Weyl-ordered operator algebra is gener-

alized. For p . 2, a new type of affine algebra is found.

2. VIRASORO-TYPE SOLUTIONS OF JACOBI IDENTITY

Consider first the general form of algebras on the p-dimensional integer

lattice of indices of the Floratos±Iliopoulos type,

[Lm , Ln] 5 f(mn)Lm 1 n (1)

where m 5 (m1, m2, . . . , mp), mn 5 Aijmi nj , Aij 5 2 A ji (antisymmetric

matrix); thus mn 5 2 nm and f(mn) 5 2 f( 2 mn).

The Jacobi identity dictates the relation for the antisymmetric struc-
ture constants:

f(mn)f(mp 1 np) 1 f(np)f(nm 1 pm) 1 f( pm)f( pn 1 mn) 5 0, (2)

which is solved by the linear function f(mn) 5 rmn 1 c. The Jacobi identity
admits solutions for f(mn)

(a) r sin(kmn), (b) r sinh(kmn), (c) r cos(kmn) (3)

where r, k P C are arbitrary constants, with r specified by a convenient
normalization of the generators.

3. CENTRAL EXTENSION AND SUPERSYMMETRIC
GENERALIZATION

The ensuing algebras which also satisfy the Jacobi identity admit central

extension in the form

[Lm , Ln] 5 f(mn) Lm 1 n 1 am d m 1 n,0 (4)

where a is an arbitrary p-vector.
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The supersymmetric extension of algebras of type (1) is

[Lm , Ln] 5 f(mn)Lm 1 n, {Fm , Fn} 5 g(mn)Lm 1 n (5)

and

[Lm , Fn] 5 f(mn)Fm 1 n (6)

where Fn are fermionic generators.

For the structure constants f(mn) of (3), the corresponding antisymmetric

structure constants g(mn) are

(a) s cos(kmn), (b) s sin(kmn), (c) s sin(kmn) (7)

with the condition g(0) 5 0.

4. THE ALGEBRA OF GENERALIZED WEYL-ORDERED
OPERATORS

There is a close relation between algebras with trigonometric structure

constants (3) and generalized Weyl-ordered operators. Define Tj,m as a fully

symmetrized operator which can be derived from the generating function

o
s

j 5 0 1 s

j 2 ajbs 2 jTj,s 2 j 5 (aP 1 bQ)s, aP [ aiPi , bQ [ b jQj (8)

where Pi , Q j satisfy the canonical commutation relation of the Heisenberg

algebra

Pi Qj 2 Q jPi 5 i l d ij (9)

Then the operators

Ea,b 5
1

2i l
exp ! 2i(aP 1 bQ) (10)

obey the algebra

[Ea,b, Ec,d] 5 2
i

l
sinh

[A, B]

2
Ea 1 c,b 1 d (11)

where A [ ! 2i(aP 1 bQ), B [ ! 2i(cP 1 dQ). In the case of quantum cor-
relation of relation (11) with (ad ) [ ai d i, (cb) [ ci b

i we have

[Ea,b, Ec,d] 5
i

l
sinh[ l (ad ) 2 (cb)]Ea 1 c,b 1 d (12)

In the two-dimensional case this algebra turns into the Weyl-ordered two-

dimensional operator algebra [11].
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5. THE AREA-PRESERVING DIFFEOMORPHISM ALGEBRA

In the ( 2 case there is a nice isomorphism between the algebra of Weyl-
ordered operators and the Moyal bracket algebra:

[Lf , Lg] 5 iLsin l {f,g} (13)

where

Lf 5
1

2
f(x 2 i l - y , y 1 i l - x) (14)

We can try to find a similar relation in the multidimensional case.

In the two-dimensional case p 5 2, to the compact surface ( 2 with
metric h a b and unity area

# d 2 j ! ) deth a b ( j ) ) 5 1 (15)

we may introduce a complete orthonormal basis YI ( j ) for harmonic decompo-

sition of the surface coordinates X m :

X m 5 o
I

x m IYI ( j ) (16)

Then in this basis the group of area-preserving diffeomorphi sms is [12]

[YA , YB] 5 fABCY C (17)

where

fABC 5 # d 2 j ! ) deth a b ( j ) ) YA( j )[YB( j ), YC( j )] (18)

However, the structure constants of this representation depend on surface

topology. Therefore, in the multidimensional case we derive a basis-indepen-

dent area-preserving diffeomorphism algebra in terms of local differential
operators.

Consider the p-dimensional surface ( p with local commuting coordinates

xi and fj P C[ ( p] as their differentiable functions. Then the basis-independent

realization for the area-preserving diffeomorphism generators is

L -
f 5 )

f1;1 f1;2 ?? ? f1;p 2 1 - 1

f2;1 f2;2 ?? ? f2;p 2 1 - 2

?? ? ? ?? ? ? ? ? ? ? ?? ?
fp;1 fp;2 ?? ? fp;p 2 1 - p ) (19)

where fi; j [ - j fi ( ( p), so that the generators L -
f transform dxi to dxi ® dxi 1
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- (i)a
idxi (no summing), where ai is cofactor of - i in the L -

f expression. Infinitesi-

mally, this is a canonical transformation which preserves the phase-space

area element dx1dx2 . . . dxp. The explicit form of this transformation for p 5
3 is

(x1, x2, x3) ® 1 x1 1 Z f1;2 f2;2

f1;3 f2;3 Z , x2 2 Z f1;1 f2;1

f1;3 f2;3 Z , x3 (20)

1 Z f1;1 f2;1

f1;2 f2;2 Z 2
The basis-independent realization for the area-preserving diffeomorph-

ism generators L -
f obeys the algebra

[L -
f , L -

g ] 5 LL
-
f

-
g 2 LL

-
g

-
f (21)

For p 5 2 this algebra turns into the well-known area-preserving diffeomorph-

isms algebra [3].
Thus, for p . 2 there is no isomorphism between the algebra of general-

ized Weyl-ordered operators and the area-preserving diffeomorphism algebra.

This close relation appears only for p 5 2. In the general case we have an

algebra with two terms, and it has a more general form than our solutions

of the Jacobi identity (3).

6. INTERRELATION BETWEEN THE ALGEBRAS IN THE
MULTIDIMENSIONAL CASE

Thus, for p 5 2 we have four types of algebras that are isomorphic:

1. The Moyal algebra

[Lf , Lg] 5 L{f,g}M (22)

where

Lf 5
- f

- x

-
- y

2
- f

- y

-
- x

and { f, g}M can be written as [13]

{ f, g}M 5 lim
-x 8 ® -x

1

k
sin(k ¹ 3 ¹ 8) f(

-
x )g(

-
x 8) (23)

{ f, g}M 5 o
`

s 5 0

( 2 1)sk2s

(2s 1 1)! o
2s 1 1

j 5 0
( 2 1) j 1 2s 1 1

j 2
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3 [ - j
x - 2s 1 1 2 j

y f(x, y)][ - 2s 1 1 2 j
x - j

y g(x, y)] (24)

{ f, g}M 5
1

4 p 2k # d
-

x 8 d
-

x 9 f(
-

x 8)g(
-
x 9)sin k(

-
x 3

-
x 8 1

-
x 8 3

-
x 9 1

-
x 9 3

-
x ) (25)

2. The vector field algebra

{L -
f , L -g } 5 L{

-
f ,

-
g } (26)

where

L -
f 5 e ij -

-
f

- x8

-
- x j and {

-
f ,

-
g } 5 e ij ¹ i

-
f ¹ j

-
g

3. The Weyl-ordered operator algebra

[Ea,b, Ec,d] 5 2
1

l
sin l [(ad ) 2 (cb)]Ea 1 c,b 1 d (27)

4. The algebra of area-preserving diffeomorphi sms

[Lf , Lg] 5 L{f,g}; { f, g} [ ( - f/ - x1)( - / - x2) 2 ( - f/ - x2)( - g/ - x1) (28)

What is the interrelation among these algebras in the multidimen-

sional case?

For p . 2, the forms of the algebras (26) and (27) are defined.

Let us consider an isomorphism between the possible generalizations
of the Moyal and the Weyl-ordered operator algebras. For p . 2, let the

Weyl-ordered operator algebra be defined as the algebra

[E -
a ,

-
b , E -

c ,
-

d ] 5 2
1

l
sin l F det 1

-
a

-
c

-
b

-
d 2 G E -

a 1
-

c ,
-

b 1
-

d (29)

where

det 1
-

a
-

c
-

b
-

d 2 5 (
-

a
-

d ) 2 (
-

b
-

c )

Then, for n 5 2p the Moyal bracket can be defined as follows:

{
-
f ,

-
g }M 5 lim-

x 8 ®
-

x
r sin[k det( ¹ , ¹ 8)]

-
f (

-
x )

-
g (

-
x 8) (30)

which for k ® 0 gives { f, g}Poisson.

At the same time, for any n and not only for n 5 2p, { f, g}M can be

defined as
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{
-
f ,

-
g }M 5 lim-

x 8 ®
-

x
r sin(kAij ¹ i ¹ j)

-
f (

-
x )

-
g (

-
x 8) (31)

Then, from the requirement limk ® 0 {
-
f ,

-
g }M 5 {

-
f ,

-
g }Poisson we obtain that

{
-
f ,

-
g }Poisson 5 Aij ¹ i

-
f ¹ j

-
g (32)

From this it follows that if A 5 Aijdxi Ù dxj is a closed (dA 5 0), nonsingular

(Ap Þ 0) 2-form, then generalizations (23) and (27) coincide. Hence, it follows

that in the ª noncanonicalº form, for Aij Þ e IJ 5 (
0

I

2 I

0
), the Weyl-ordered

operator algebra can be written as

[E -
m , E -

n ] 5 2
1

l
sin l mn E -

m 1
-

n (33)

where
-

m 5
-

a %
-

b ,
-

n 5
-

c %
-

d , mn 5 Aijm i nj.

For p . 2 under what conditions is the Moyal algebra isomorphic to
the algebra of area-preserving diffeomorphisms? To answer this question, let

us determine the Lie algebra of vector fields on ( p by the condition

{L -
f , L -

g } 5 L{
-
f ,

-
g } (34)

where

L -
f 5 Aij -

-
f

- xi

-
- x j and {

-
f ,

-
g } 5 Aij -

-
f

- xi

-
-

g

- x j

It is reasonable to suppose that in the case of deformation the Poisson
bracket of the Lie algebra of vector fields on ( p will be determined by

condition (31). From (34) it follows that La{ f 1 g,h} 5 a(L{ f,h} 1 L{g,h}) and

[L -
f , L -

g ] 5 LL -
f

-
g 2 LL -

g
-
f (35)

i.e., this is the algebra of diffeomorphi sms.

To consider the opposite correlation, under what conditions is the the
algebra of diffeomorphisms isomorphic to the Lie algebra of vector fields

on ( p? Let the algebra of area-preserving diffeomorphisms be (31), where

K-
f is defined by (21). In this case, if K-

f

-
g 5 L -

f

-
g and K -

g

-
f 5 L -

g

-
f , i.e.,

det )
f1;1 f1;2

? ?? f1;p 2 1 - 1

f2;1 f2;2
? ?? f2;p 2 1 - 2

??? ?? ? ? ? ? ? ? ? ?? ?
fp;1 fp;2

? ?? fp;p 2 1 - p ) 5 e ij -
-
f

- xi

-
- x j , e ij 5 1 0 I

2 I 0 2 (36)

then the algebras (37) and (31) are isomorphic.

Thus, for p . 2 we obtain four different algebras (25) and (29)±(31)

which are isomorphic only under special additional conditions.
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